Oxygen-dependent PAF receptor binding and intracellular signaling in ovine fetal pulmonary vascular smooth muscle.
نویسندگان
چکیده
Circulating levels of platelet-activating factor (PAF) are high in the fetus, and PAF is active in maintaining high PVR in fetal hypoxia (Ibe BO, Hibler S, Raj J. J Appl Physiol 85: 1079-1085, 1998). PAF synthesis by fetal pulmonary vascular smooth muscle cells (PVSMC) is high in hypoxia, but how oxygen tension affects PAF receptor (PAF-r) binding in PVSMC is not known. We studied the effect of oxygen tension on PAF-r binding and signaling in fetal PVSMC. PAF binding was saturable. PAF-r density (B(max): fmol/10(6) cells; means +/- SE, n = 6), 25.2 +/- 0.77 during hypoxia (Po(2) <40 Torr), was higher than 13.9 +/- 0.44 during normoxia (Po(2) approximately 100 Torr). K(d) was twofold lower in hypoxia than normoxia. PAF-r protein expression, 35-40% greater in hypoxia, was inhibited by cycloheximide, a protein synthesis inhibitor, suggesting translational regulation. IP(3) release, an index of PAF-r-mediated cell signaling, was greater in hypoxia (EC(50): hypoxia, 2.94 +/- 0.61; normoxia, 5.85 +/- 0.51 nM). Exogenous PAF induced 50-90% greater intracellular calcium flux in cells during hypoxia, indicating hypoxia augments PAF-r-mediated cell signaling. PAF-r phosphorylation, with or without 5 nM PAF, was 40% greater in hypoxia. These data show 1) hypoxia upregulates PAF-r binding, PAF-r phosphorylation, and PAF-r-mediated intracellular signaling, evidenced by augmented IP(3) production and intracellular Ca(2+) flux; and 2) hypoxia-induced PAF-r phosphorylation results in activation of PAF-r-mediated signal transduction. The data suggest the fetal hypoxic environment facilitates PAF-r binding and signaling, thereby promoting PAF-mediated pulmonary vasoconstriction and maintenance of high PVR in utero.
منابع مشابه
Platelet-activating factor induces ovine fetal pulmonary venous smooth muscle cell proliferation: role of epidermal growth factor receptor transactivation.
We have previously reported that platelet-activating factor (PAF) is present in very high levels in the ovine fetal lung and circulation and that PAF serves as an important physiological vasoconstrictor of the pulmonary circulation in utero. However, it is not known whether PAF stimulates pulmonary vascular smooth muscle cell (SMC) proliferation. In this study, we used ovine fetal pulmonary ven...
متن کاملPlatelet-activating factor modulates activity of cyclic nucleotides in fetal ovine pulmonary vascular smooth muscle.
At birth, release of endogenous vasodilators such as nitric oxide and prostacyclin facilitate pulmonary vasodilation via the cyclic nucleotides, cGMP and cAMP. Interaction of cyclic nucleotides and platelet-activating factor (PAF)-mediated responses in pulmonary vascular smooth muscle is not known. We studied the effects of cGMP and cAMP on PAF-mediated responses in ovine fetal intrapulmonary v...
متن کاملHypoxia and hyperoxia potentiate PAF receptor‐mediated effects in newborn ovine pulmonary arterial smooth muscle cells: significance in oxygen therapy of PPHN
Platelet-activating factor (PAF) acting via its receptor (PAFR) is implicated in the pathogenesis of persistent pulmonary hypertension of the newborn (PPHN). Effects of long-term oxygen therapy on newborn lung are not well understood; therefore, we studied the effect of oxygen tension on ovine newborn pulmonary artery smooth muscle cells (NBPASMC). Our global hypothesis is that PPHN results fro...
متن کاملMechanism by which nuclear factor-kappa beta (NF-kB) regulates ovine fetal pulmonary vascular smooth muscle cell proliferation
Platelet activating factor (PAF) modulates ovine fetal pulmonary hemodynamic. PAF acts through its receptors (PAFR) in pulmonary vascular smooth muscle cells (PVSMC) to phosphorylate and induce nuclear translocation of NF-kB p65 leading to PVSMC proliferation. However, the interaction of NF-kB p65 and PAF in the nuclear domain to effect PVSMC cell growth is not clearly defined. We used siRNA-de...
متن کاملRole of platelet-activating factor in pulmonary vascular remodeling associated with chronic high altitude hypoxia in ovine fetal lambs.
Platelet-activating factor (PAF) is implicated in pathogenesis of chronic hypoxia-induced pulmonary hypertension in some animal models and in neonates. Effects of chronic hypoxia on PAF receptor (PAF-R) system in fetal pulmonary vasculature are unknown. We investigated the effect of chronic high altitude hypoxia (HAH) in fetal lambs [pregnant ewes were kept at 3,801 m (12,470 ft) altitude from ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 288 5 شماره
صفحات -
تاریخ انتشار 2005